DSC 210 Numerical Linear Algebra (FA 24)
Numerical Linear Algebra is a fundamental tool for data science and machine learning. This course will introduce basic concepts and provide a mathematical foundation for research in machine learning and data science. We will discuss how numerical linear algebra is useful and essential in several key machine learning and data science topics.
Course Contents
- Fundamentals (matrix, orthogonality, norms, SVD, QR factorization, Gram-Schmidt Orthogonalization, Numerical methods)
- Application to Machine Learning and Data science topics (Least squares problems, Generative AI, Principal component analysis).
Course Staff
- Instructor: Prof. Lily Weng, HDSI
- TA:
- Somanshu Singla, CSE
- Yashowardhan Shinde, ECE
For contact information, see Staff page.
Course Logistics
For course logistics, see Logistics page.
Course Timeline
For course timeline, slides, and scribe-notes, see Course Timeline page.